CI/CD for open-source Kubernetes applications

Source:- sdtimes.com

Having a continuous integration and deployment (CI/CD) pipeline for a project is almost mandatory nowadays. With cloud-native software in general and Kubernetes applications in particular, developers and operators face new challenges: How do I run my end-to-end tests in a Kubernetes environment? How can I automate the process of testing and releasing my application for different platforms and Kubernetes versions?

This post will walk you through the different steps needed to set up in a CI/CD system when working with open-source projects, so you and your users can benefit from community contributions, while maintaining the best quality possible in the code.

Cloud-native applications have several interesting characteristics that are very convenient in an environment like Kubernetes. First of all, they are based on multiple microservices. When updating a microservice, you usually want to ship it and use it as quickly as possible. To be confident about doing this, you need to run tests.  Unit tests are easy, but the challenge with microservices comes with the need to test the interaction between them, to be sure you are not introducing regressions. That’s when end-to-end tests come in handy.

If you are working on an open-source project, you will probably want a community to support it. Having people submit new issues and pull requests is critical for medium- and large projects. While you want to keep contributions coming from new users, you also want their code to maintain the same quality as that in the project. This means you want their code to run the same battery of e2e tests, even before you look into it. This implies that you will end up running untrusted code in your CI system, so you will need to be prepared for this.

Finally, once new changes are in the master branch, you may want to release a new version of your application. This may happen several times a month or even several times a week. Therefore, the process of creating new releases should be as automated as possible, enabling you to create releases as often as you want. If your project is using Kubernetes, the easiest (and most common) way to make the application available to your users is through a Helm chart. It’s also important to keep the maintenance of those charts in the automated pipeline to avoid disruptions.

Fortunately, it is possible to use open source and free tools to achieve an end-to-end scenario, from developing your code, testing changes, and publishing new versions.

The tooling

Relevant  tools include:

  • GitHub for storing code.
  • Any CI system to run the pipeline. Note that any CI is valid here as long as it has support for running Docker containers.
  • A Kubernetes distribution for deploying the application for the e2e tests. In particular, you can use:
    • Kind to run e2e tests and untrusted code. The good thing about kind is that it allows you to run Kubernetes just having a Docker daemon running. Also since you will be running kind in CircleCI, you don’t need to worry about compromising your infrastructure.
    • GKE to run e2e tests in an environment that is closer to a production deployment. Note that these tests will be running in your GKE account. You will only want to do this when the code has been properly reviewed. Again, any managed Kubernetes provider is a good option here as long as it mimics how the application can be deployed in production.
      The application

      In the example below, I’ve have applied multiple techniques to set up the CI/CD of a real-world app Kubeapps, which is an open-source project. It is deployed in Kubernetes and it is hosted in GitHub. It’s also available for users as a Helm chart, so it makes a perfect fit for the use case I want to demonstrate.

      The continuous integration and deployment journey

      Our CI pipeline will be composed of three different stages and will look something like this:

      Stage 1 – Unit testing and image building

      The first set of jobs will execute the unit tests and will generate the Docker images for each one of the microservices. These jobs can be run in parallel. You can do so for as many microservices as you have. Note that all the microservices are sharing the same Git repository. This is useful for scenarios in which a new feature requires changes in several services. That way you can have all the related changes in the different microservices in the same development branch.

      If all those jobs succeed, then go to the next stage and use the generated images to run your end-to-end tests.

      One particular thing to notice is that you won’t be able to push new Docker images when working with PRs since external users won’t have the credentials needed to push to the project registry. To be able to share the images for stage 2, you need to store them as files.

      But, in the case when you actually have credentials, you want to push your images to a registry, for example in the master branch or when running a release job. That’s something easy to achieve, just log in with your registry account and push a development tag for your image.

      Stage 2 – E2E tests

      At this point, you have Docker images for all the microservices with the new changes. To run your e2e test, you need to perform several steps.

      Spin up a Kubernetes platform

      This will be kind for PRs and GKE for trusted code (either master or a release tag).

      Creating a cluster in GKE (or any other managed Kubernetes system) is a bit more complicated. You need to check if you have the required credentials, check if the cluster has not already been created, and wait for the cluster to be healthy before doing anything else. You can take a look at the script we use to ensure that you perform the different steps.

    • Where BRANCH is the Kubernetes major version (e.g 1.11), ZONE is the GCloud zone where you will create your cluster and CLUSTER is the name of the cluster.
      Load your images in the cluster

      This is only needed when using kind, since in the GKE environment, the new images can be pulled from the Docker registry.